常数Q因子的史密斯圆图曲线
每个阻抗点(Z=R+j*X)都有一个相关的Q因子(Q=| X / R |),这些都可以在史密斯圆图上绘制。例如,在图1中,Z1 =0.33+j*2,Q因子为6(Q=2/0.33=6),Z2=1+j*1,QQ因子为11(Q=1/1=1)。然后可以在圆图上绘制曲线(图1),链接具有相同Q因子的阻抗。
图1、恒定Q因子的史密斯圆图曲线
现在考虑负载阻抗(ZL),其前面有一个并联电感和串联电容的匹配 络,它将阻抗沿着图1中箭头所示的路径转换为Z0。在沿着路径的每个阻抗处,可以计算Q因子,但很明显它们都在Q=1曲线内,因此该匹配 络的最高Q因子是1。因为Q因子是测量阻抗值随频率变化的速度,这个低值1意味着匹配 络将倾向于宽带。因此,Q因子常数曲线可用作维持宽带匹配 络的指南,或者,在相反的情况下,设计人员可以故意通过更高的Q因子区域获取阻抗,以提高 络在诸如滤波器等应用中的频率选择性。
恒定性能圆
与恒定Q因子的曲线类似,可以在史密斯圆图上绘制其他轮廓线以绘制阻抗,例如该阻抗在呈现给某个有源器件的输入时将导致该器件具有相同性能特征。这假设设计人员具有正在研究的有源器件或晶体管的适当模型以及可以在整个输入阻抗范围内计算电路性能的仿真模拟器。通常绘制的性能特征参数类型包括信号增益,噪声系数,输出功率和稳定性因子。
图2、恒定噪声系数的史密斯圆图圆
例如,图2显示了晶体管的典型噪声系数圆,或者换句话说,恒定阻抗(或反射系数)的圆圈,当呈现给晶体管输入时,会给出相同的电路噪声性能。最佳反射系数(Γopt)显示在圆圈的中间,这个最佳阻抗导致噪声系数为2 dB。远离该最佳值的阻抗给出了由标记为2.5dB,3dB等的圆圈表示的较差的噪声系数。如果设计人员具有3 dB噪声系数规格,那么圆圈表明匹配 络必须设计为保持晶体管在3 dB噪声系数圆内的输入阻抗。
图3、恒定增益的史密斯圆图圆
类似地,图3显示了晶体管的典型增益圆,或者换句话说,阻抗(或反射系数)的圆圈,当呈现给晶体管输入时,将提供相同的电路增益性能。最大增益的最佳阻抗显示在圆圈的中间,这个最佳阻抗导致10 dB的增益。远离该最佳值的阻抗给出了由标记为9dB,8dB等的圆圈表示的较低增益。如果设计人员具有9 dB增益规格,则圆圈表明匹配 络必须设计为将晶体管的输入阻抗保持在9 dB的圆圈范围以内。
如果晶体管的噪声系数和增益圆都绘制在同一图表上,设计人员可以根据选择哪个阻抗提供给晶体管的输入,看出噪声和增益性能之间的权衡。例如,图4显示有一个输入阻抗会导致晶体管具有2 dB噪声系数和8 dB增益,另一个输入阻抗将导致晶体管具有3.5 dB噪声系数和10dB增益。然后,设计人员必须决定哪种权衡最符合要求的规格。
图4、绘制噪声系数和增益圆,以显示输入阻抗的性能折衷
总而言之,史密斯圆图在正确理解后,是MMIC设计者的朋友,也是阻抗控制和匹配 络设计的宝贵工具。它允许在有限的圆图上绘制无源 络的所有可能的反射系数,阻抗和导纳,并允许用户通过简单的结构确定传输线和串联和并联元件如何转换阻抗。它还使设计人员能够绘制“恒定性能的圆”并确定设计参数之间的权衡,例如增益和噪声系数或增益和输出功率之间的权衡。
声明:本站部分文章内容及图片转载于互联 、内容不代表本站观点,如有内容涉及侵权,请您立即联系本站处理,非常感谢!