DevCell:华中农业大学王学路研究组揭示激素与环境调控植物发育机制

植物生长发育无时不受外界环境和激素的调控。油菜素甾醇作为激素中的一类重要新成员,在调控多种植物的高矮、株型、开花时间、种子大小,甚至抗逆抗病性等方面都发挥着重要作用。光是控制植物生长极为重要的环境因子,调节植物生长发育的每一个方面。早在1996年,人们就认为光可能与油菜素甾醇一同调控植物的生长发育的很多过程,但其中的分子机制却一直不清楚。

早在2011年,王学路课题组的杨梦冉等同学就开始了这各方面的研究,首先通过用酵母双杂交筛选油菜素甾醇信号通路中核心的转录因子BES1互作蛋白的方式,找到了一类新的与BES1直接相互作用的E3泛素连接酶SINATs。后来经过近六年的细致工作,整合了生物化学、分子生物学、遗传学和细胞生物学的方法,证明了SINATs通过介导BES1的泛素化降解来调控BR信号以及植物的生长发育。尤其是他们发现,SINATs的蛋白量受到光照条件的调节,SINATs-BES1模块连接了内源激素信号以及外界光照条件来共同调控植物的生长发育。这些发现对深入了解植物生长调控的复杂机制具有重要意义。

以王学路课题组发现的SINAT为基础,还参与了美国爱荷华州立大学尹延海教授课题组的另一项研究,BES1被SINATs泛素化以后可通过细胞自噬途径所降解,从而协调植物的生长发育与逆境响应,证明了SINATs-BES1是连接外界环境信号和自身激素信号而调控植物生长发育和逆境响应的重要模块。尹延海教授课题组题为“selecive Autophagy of BES1 Mediated by DSK2 Balances Plant Growth and Survival”的研究在同一期Developmental Cell背靠背发表,这一系列的研究成果对于丰富油菜素甾醇(BRs)信号通路,揭示植物激素信号通路与环境密不可分共同调控植物生长发育的机制有重要意义,也为农业上的运用开辟了重要新思路。两篇Developmental Cell文章相互印证,互为补充,为今年来该领域有重要影响的突出进展。

叶片直立性是禾本科作物独特的株型性状,与群体产量密切相关。在禾本科作物水稻中,油菜素甾醇(BRs)是调控叶片直立性的主要植物激素。然而,这种激素的信号转导通路主要是基于双子叶植物拟南芥的研究建立起来的,但是在单子叶植物,尤其是禾本科作物中,他的信号通路还没有完成,重要组分还有待待发现和研究。近年来的研究表明禾本科作物中BR信号转导通路与双子叶植物存在显著不同,特别是GSK2对下游组分的调控方式,在禾本科作物中可能更为特意。

王学路课题组通过突变体筛选和图位克隆发现了水稻BR信号转导通路中的新成员RLA1,并通过遗传分析和生物学化学的方法证明RLA1在GSK2下游被GSK2所磷酸化而调控其蛋白稳定性。同时也证明RLA1可以和转录因子OsBZR1及DLT互作,形成BZR1-RLA1-DLT的转录复合体,共同调控水稻叶片直立性的表型。该研究不仅发现了水稻中独特的BR信号转导途径,也为人工改造水稻株型,提高禾本科作物产量提供了重要理论意义。

原文链接:

原文摘要:

The plant hormones brassinosteroids (BRs) participate in light-mediated regulation of plant growth, although the underlying mechanisms are far from being fully understood. In addition, the function of the core transcription factor in the BR signaling pathway, BRI1-EMS-SUPPRESSOR 1 (BES1), largely depends on its phosphorylation status and its protein stability, but the regulation of BES1 is not well understood. Here, we report that SINA of Arabidopsis thaliana (SINATs) specifically interact with dephosphorylated BES1 and mediate its ubiquitination and degradation. Our genetic data demonstrated that SINATs inhibit BR signaling in a BES1-dependent manner. Interestingly, we found that the protein levels of SINATs were decreased in the dark and increased in the light, which changed BES1 protein levels accordingly. Thus, our study not only uncovered a new mechanism of BES1 degradation but also provides significant insights into how light conditionally regulates plant growth through controlling accumulation of different forms of BES1.

声明:本站部分文章内容及图片转载于互联 、内容不代表本站观点,如有内容涉及侵权,请您立即联系本站处理,非常感谢!

(0)
上一篇 2017年4月13日
下一篇 2017年4月13日

相关推荐