通讯单位:英国莱斯特大学、英国迪德科特法拉第研究所
锂离子电池(LIB)电动汽车近年来的市场快速扩张,而电动汽车电池的平均寿命约为10年,如果考虑到其他使车辆停止使用的因素,例如保险注销和自愿 废,需要回收的锂离子电池废物量仅在英国就可能会超过就有42000吨。因此,对于废锂离子电池的回收势在必行。
LIB组包含多个电池单元模块,通常先拆除包装,然后处理模块和电池组进行回收利用。电池内的主要价值在于钴、锂、石墨等活性材料成分。然而,这些材料存在于电极中,需要繁琐工艺才能从电池内的电极组件中提取回收。LIB的电极具有多孔复合膜的层状结构,厚度可达200 μm,包含活性材料、聚合物粘合剂和导电添加剂。典型的粘合剂包括聚偏二氟乙烯(PVDF)或混合羧甲基纤维素(CMC)和丁苯橡胶(SBR),通过使用水或有机溶剂溶解金属箔,聚合物粘合剂或活性材料可实现活性物质的回收。这种方法的效率在很大程度上取决于工艺流程,由于其结构的复杂性,通常首先将电池模块切碎。但是,被切碎的成分难以分离成具有足够纯度的单个成分以形成新的电池材料。最近的研究表明,电极分离而不是电池粉碎可以显着提高所得产品的纯度,从而提高工艺经济性。
结果与讨论:
高功率超声快速分层机理
图1、高速相机在20毫米直径超声波发生器下方的空化快照。
图2、图像显示超声波对QC剔除物正面的影响
图3、从高速相机拍摄的快照的图像。
图3a显示了在去离子水中锂离子电池阳极分层过程中的空化作用和声压的一个例子。图像是用高速相机拍摄的。0.2秒后,可以看到石墨涂层(图3b)首先从铜集流体上凸出,然后由于压力波在涂层和铜箔之间的界面处产生空化而成片剥落。这种分层材料在空化作用下仅0.5秒即被最终粉碎(图3c)。
汽车电池电极的超声波分层
图4、超声波分层对阳极和阴极的影响。
Chunhong Lei, Iain Aldous, Jennifer M. Hartley, Dana L. Thompson, Sean Scott, Rowan Hanson, Paul A. Anderson, Emma Kendrick, Rob Sommerville, Karl S. Ryder and Andrew P. Abbott, Lithium ion battery recycling using high-intensity ultrasonication, Green Chem., 2021, DOI:10.1039/D1GC01623G
声明:本站部分文章内容及图片转载于互联 、内容不代表本站观点,如有内容涉及侵权,请您立即联系本站处理,非常感谢!