烟尘的检测方法

烟尘污染大气,对人们身体健康有很大的危害,会引起心脏病患者死亡率的增加。另一方面,随着低碳环保行动的深入,降低生活环境中C的含量成为环境保护的重中之重。因此,对排放源烟尘浓度的测量就成为环境监测的一个重要方面。

目前,根据测量机理的不同分为两类分析方法:取样法和非取样法。

取样法是从待测区域中取部分具有代表性的含烟尘气 样, 并将颗粒从样品中分离出来,再送入随后的分析测量系统来测量烟尘质量浓度的方法。

1)滤膜称重法

滤膜称重法的基本原理是以规定的流量采样,将空气中的烟尘颗粒沉集于高性能滤膜上,称滤膜采样前、后的质量, 由质量差求得沉集的烟尘颗粒质量,再根据采样空气体积,计算出烟尘颗粒的质量浓度。 由于受滤膜性能影响,大多测量采用PM10和PM2.5 2个标准的烟尘颗粒物。该方法原理简单,测定数据可靠,测量不受颗粒物物理性质的影响。但操作烦琐费时(一般3~24h)、噪声大。

2)β射线吸收法

β射线吸收法测量装置由β射线源、滤膜支架及探测器等组成。当含尘样气通过滤膜时,颗粒被过滤在滤膜上,经过一段时间后,转动轴带动滤膜移动并使被滤颗粒进入测量区域,测量区域上部发出的β射线透过颗粒介质后衰减并被接收,根据β射线的衰减程度即可确定被滤尘样的质量,进而求得被测粉尘的质量浓度。

β射线吸收法是在称重法基础上发展而来的,该方法主要用于煤矿粉尘与工业燃烧烟尘(主要含C和S)的测量,以及用于气溶胶质量浓度的监测。该方法测量的动态范围宽,准确度及灵敏度高,且测量结果只与粒子的质量有关。但该方法存在安全隐患,同时,系统要求增加各种屏蔽措施,结构设备复杂且昂贵。

3)压电晶体差频法

压电晶体法采用石英谐振器作为敏感元件。其工作原理是使空气以恒定流量通过切割器, 进入由高压放电针和微量石英谐振器组成的静电采样器, 在高压电晕放电的作用下,气流中的颗粒物全部沉降于测量谐振器的电极表面上,因电极上增加了颗粒物的质量,其振荡频率发生变化,根据频率变化可测定烟尘颗粒物的质量浓度。 与其他测烟尘浓度的方法相比,压电晶体差频法具有灵敏度很高,石英压电晶体电极的质量灵敏度理论上为180Hz/μg。假定所测空气烟尘浓度为150μg/m3,以1L/min采样流速采样2min,所采烟尘量为0.3mg,仪器的理论响应值为54Hz,就可准确测定。其采样流量低、采样时间短是其他测尘法无法比拟的;检测范围宽,由于输出的低 频信号达10~105 Hz,能满足大气烟尘不同浓度的测定,如果输出104Hz, 被测烟尘浓度理论上等于28mg/m3,这样高的烟尘浓度一般已超出环境烟尘浓度的范围但由于压电晶体每做完一次测试后需要重新清洁后才能进行下次测试,所以,这种测试方法不能进行长时间在线检测。

4)微量天平振荡法

测量原理是基于锥形元件振荡微量天平原理,核心部件为锥形元件振荡器。锥形元件振荡器在其自然频率下振荡, 振荡频率由振荡器件的物理特性、参加振荡的滤膜质量和沉积在滤膜上的颗粒物质量决定。仪器通过采样泵和流量计, 使环境空气以一恒定的流量通过采样滤膜,颗粒物则沉积在滤膜上。测量出一定间隔时间前、后的2个振荡频率, 就能计算出在这一段时间里收集在滤膜上颗粒物的质量,再除以流过滤膜的空气的总体积,得到这段时间内空气中颗粒物的平均浓度。

微量天平振荡法适用范围很广,现代主要用于空间 环境表面污染(分子污染和颗粒物污染)的监测,又因其高灵敏度、高分辨率及实时在线监测、输出数字化等优点在电化学和生物领域备受关注。

声明:本站部分文章内容及图片转载于互联 、内容不代表本站观点,如有内容涉及侵权,请您立即联系本站处理,非常感谢!

(0)
上一篇 2021年12月3日
下一篇 2021年12月3日

相关推荐