双频段环境能量采集电路设计

摘要:

设计了一款低输入功率下的双频段能量采集电路,采用T型匹配 络完成整流电路的输入匹配,并通过并联短截线拓宽了匹配带宽。测量结果表明,能量采集电路在1.84 GHz和2.45 GHz处阻抗匹配良好。其次,在0 dBm的单频输入功率下,该电路在1.84 GHz和2.45 GHz处分别取得5.12%和9.97%的RF-DC效率,负载5.1 kΩ两端的输出电压分别为0.51 V和0.71 V;在0 dBm的双频输入功率下,能量采集电路的效率达到了14.9%,输出电压为0.87 V。将这些采集到的能量储存起来,足以驱动一些低功耗器件。

?

中文引用格式: 徐力翔,游彬,华富春. 双频段环境能量采集电路设计[J].电子技术应用,2018,44(9):48-51.

英文引用格式: Xu Lixiang,You Bin,Hua Fuchun. Dual-band ambient energy harvesting circuit design[J]. Application of Electronic Technique,2018,44(9):48-51.

0 引言

目前大多数研究都针对单一频率的射频信号进行采集。文献[2]、[3]提出了单个频段的能量采集,文献[2]采集了2.45 GHz的射频能量,通过引入缺陷地结构的低通滤波器,将整流产生的高次谐波限制在整流电路与低通滤波器之间来提高整流效率,在0 dBm的输入功率下RF-DC的效率为11%。文献[3]提出了一种工作在5.8 GHz的整流电路,较之文献[2],其在整流电路和输出端之间多引入了一个输出直通滤波器来提升整流效率;当输入功率为0 dBm时,效率为11.66%。但是由于环境中的射频能量过于微弱,即使在较高的转换效率下,最后输出的电压也十分有限。为了增加最后输出的电压,文献[4]提出了900 MHz和2.4 GHz的双频段能量采集,但是采集频率在低频段处偏移到了400 MHz,而在目标设计频率900 MHz和2.4 GHz处,在15 dBm的输入功率下才达到RF-DC效率的最大值,仅为13%和16%。此外,目前空间的周围射频信号主要来自于各种无线通信系统,这些无线通信系统都是有一定的频带范围,且跳频工作,而目前的文献无论是单频段的采集还是双频段的采集,针对的均是单个频点,使得整个设计只能在较窄的频段范围内采集能量,并不符合采集实际信号的带宽要求。综上所述,周围射频能量采集电路应该在较低输入功率下获得尽可能高的能量转换效率,并具有一定的匹配带宽。

1 理论分析与计算

周围环境射频能量采集系统主要由天线、匹配 络和整流电路等组成,其框图如图1所示。由天线来接收周围环境中的射频能量,经过匹配电路,将射频信号送入整流电路,转换为直流能量输出。天线与整流电路之间的匹配 络用来保证采集到的无线能量能尽可能多地输入到整流电路,匹配电路是整个无线采集系统的关键电路之一。

1.1 匹配 络的设计

在频率f2点处,也必定满足:

利用上述原理,可以实现任意两个频率的阻抗匹配。在设计过程中,需要经过大量重复计算得到最适合的匹配参数,图3所示为两个任意阻抗匹配的流程图,按流程图步骤由计算机实现多次迭代,可以快速得到匹配参数。

为了不破坏已经建立的匹配,则要求加入的这两段传输线满足:

其中,ZD和ZE分别为开路短截线和短路短截线的特征阻抗,θ1是这两段线在频率f1处的电长度。当式(6)成立时,开路短截线和短路短截线所引入的电纳就能相互抵消,对已经完成的匹配不产生影响。由图5可以看到,不加短截线的匹配 络匹配带宽较窄,而进行频带拓宽处理后,无论是匹配的带宽还是S11的数值,都有了明显的提升。

1.2 RF-DC整流电路的设计

2 电路加工测量结果

2.1 电路反射系数测量

2.2 电路RF-DC效率测量

电路的RF-DC整流效率为:

式中POUT和PIN分别是电路的输出功率和输入功率,RL是电路的负载,电路中的值为5.1 kΩ,VO是负载两端的电压。使用Agilent E8267D矢量信号发生器作为射频源,发射信号频率为1.84 GHz和2.45 GHz的连续波,负载两端的电压用万用表测量。整流电路输出电压和RF-DC效率随输入功率的变化曲线如图11所示。图中比较了在单频和双频输入下,输出电压和RF-DC效率随着输入功率的变化曲线。在0 dBm的单频输入功率下,该电路在1.84 GHz和2.45 GHz处分别取得5.12%和9.97%的RF-DC效率,负载两端的输出电压分别为0.51 V和0.71 V,电路在1.84 GHz处的效率不及2.45 GHz处,这是因为前者的S11要略差于后者;在0 dBm的双频输入功率下,能量采集电路的效率达到了14.9%,输出电压为0.87 V。从对比的结果可以发现,双频的输出电压和RF-DC效率较之单频的结果有了大幅的提升。这说明通过增加能量采集的频段数来提升能量转换效率是行之有效的。

3 结论

参考文献

[1] SONG C,HUANG Y,CARTER P,et al.A novel six-band dual CP rectenna using improved impedance matching technique for ambient RF energy harvesting[J].IEEE Transactions on Antennas & Propagation,2016,64(7):3160-3171.

[2] 季帅.基于微带电路的ISM波段整流天线的研究与设计[D].长春:吉林大学,2013.

[3] 衡条条.井下小功率微波输能整流天线的研究与设计[D].徐州:中国矿业大学,2014.

[4] 赵强.射频微能量采集系统的设计与实现[D].成都:电子科技大学,2016.

[5] NIKRAVAN M A,ATLASBAF Z.T-section dual-band impedance transformer for frequency-dependent complex impedance loads[J].Electronics Letters,2011,47(9):551-553.

[6] PAVONE D,BUONANNO A,D’URSO M,et al.Design considerations for radio frequency energy harvesting devices[J].Progress in Electromagnetics Research B,2012,45(45):19-35.

[7] SUN H.An enhanced rectenna using differentially-fed rectifier for wireless power transmission[J].IEEE Antennas & Wireless Propagation Letters,2016,15:32-35.

徐力翔1,游 彬1,华富春2

(1.杭州电子科技大学 电子信息学院,浙江 杭州 310018;2.兰州市西固区教育局,甘肃 兰州730000)

招聘信息

声明:本站部分文章内容及图片转载于互联 、内容不代表本站观点,如有内容涉及侵权,请您立即联系本站处理,非常感谢!

(0)
上一篇 2018年9月9日
下一篇 2018年9月9日

相关推荐