诺贝尔奖遵照炸药发明者、瑞典人诺贝尔的遗嘱创立,于1901年开始颁发,今年是120周年。尽管全球仍被新冠疫情阴影笼罩,但科学家的光芒以及人们对科学的热情无法阻挡。2021年诺贝尔奖颁奖季10月4日起“次第花开”,生理学或医学奖、物理学奖以及化学奖各自“名花有主”。这些科学家的研究成果不仅扩展了人类的认知,也成为人类知识大花园中最宝贵的花朵。
生理学或医学奖:他们发现温度和触觉感受器
人类面临的最大谜题之一,是我们如何感知环境,例如,眼睛如何探测光、声波如何影响我们的内耳、太阳的炎热、风的抚摸……这些对温度、触觉和运动的印象对于我们适应不断变化的环境至关重要。
在日常生活中,我们认为这些感觉是理所当然的,但是神经冲动是如何启动,从而感知温度和压力呢?今年的诺贝尔生理学或医学奖得主已经解决了这个问题。
来自美国加州大学旧金山分校的教授戴维·朱利叶斯利用从辣椒中提取的辣椒素,识别出了皮肤神经末梢中对热做出反应的传感器。美国斯克利普斯研究所的阿德姆·帕塔普蒂安使用压敏细胞发现了一种新型传感器,可以对皮肤和内脏中的机械刺激做出反应。
这些突破性的发现促进了我们对神经系统如何感知热、冷和机械刺激的理解。两位获奖者在我们对感官与环境之间复杂相互作用的理解中发现了关键的缺失环节。
在20世纪90年代后期,朱利叶斯通过分析辣椒素如何引起身体的灼热感,看到了重大进步的可能性。已知辣椒素可以激活引起疼痛感的神经细胞,但这种化学物质如何真正发挥这种功能是一个未解之谜。
朱利叶斯和他的同事创建了一个包含数百万个DNA片段的库,这些片段对应于在感觉神经元中表达的基因,这些基因可以对疼痛、高温和触摸做出反应。朱利叶斯和同事们假设,该基因库中应该包含一个DNA片段,可编码一种能够对辣椒素做出反应的蛋白质。
经过艰难的搜索,他们发现了一个能够使细胞对辣椒素敏感的基因–辣椒素感应基因。该基因编码了一种新的离子通道蛋白,这种新发现的辣椒素受体后来被命名为TRPV1,是一种热敏受体,在令人感觉疼痛的温度下会被激活。
TRPV1的发现是一项重大突破,为发现其他温度感应受体开辟了道路。朱利叶斯和帕塔普蒂安各自独立地使用化学物质薄荷醇来鉴定TRPM8,这是一种被证明可以被寒冷激活的受体。与TRPV1和TRPM8相关的其他离子通道被鉴定出来,它们可以在不同的温度范围被激活。
虽然温度感觉的机制被发现了,但机械刺激如何转化为触觉和压力感仍不清楚。帕塔普蒂安希望确定被机械刺激激活的受体到底是什么。
他们成功地识别出了一种基因,该基因的沉默使细胞对微量移液器的戳刺不敏感。一种全新的、完全未知的机械敏感离子通道被发现,并被命名为Piezo1,取自希腊语中“压力”一词。接着,他们发现了与Piezo1相似的感觉神经元表达高水平的第二个基因,命名为Piezo2。进一步的研究证实Piezo1和Piezo2是离子通道,通过对细胞膜施加压力而直接激活。
除了对触觉至关重要,Piezo2离子通道还在对身体位置和运动感知(即本体感觉)中发挥关键作用。此外,Piezo1和Piezo2通道还可以调节其他重要的生理过程,包括血压、呼吸和膀胱控制。
今年的诺贝尔奖获得者对TRPV1、TRPM8和Piezo通道的开创性发现,让我们了解了热、冷和机械力如何引发神经冲动,使我们能够感知和适应周围的世界。TRP通道是我们感知温度能力的核心;Piezo2通道赋予我们触觉和感知身体部位位置和运动的能力。TRP和Piezo通道还有助于许多额外的生理功能,这些功能依赖于感知温度或机械刺激。
由朱利叶斯和帕塔普蒂安的发现而引发的科学研究正紧锣密鼓地展开,科学家们正专注于阐明它们在各种生理过程中的功能。这一发现也正被用于开发治疗各种疾病如慢性疼痛的方法。
物理学奖:他们揭开复杂系统内隐藏的秘密
所有复杂系统都由许多不同且相互作用的部分组成,物理学家已经对它们展开了几个世纪的研究,但很难用数学方法来描述它们–它们可能包含很多部分,也可能由偶然因素决定。这些复杂系统随机、无序而混沌,比如天气,初始值得微小偏差会导致结果迥然不同。
今年的诺贝尔物理学奖颁给了美国科学家真锅淑郎、德国科学家克劳斯·哈塞尔曼和意大利科学家乔治·帕里西,以表彰他们为我们理解复杂物理系统所作出的开创性贡献。
其中一半奖金授予真锅淑郎和哈塞尔曼,以表彰他们“为地球的气候进行物理建模,量化其可变性并可靠地预测全球变暖”;另外一半奖金授予帕里西,以表彰他“发现从原子到行星尺度的物理系统内的无序和波动的相互作用”。
这3位科学家迎难而上,创造性地提出了很多描述和预测它们长期行为的新方法,揭示了这些复杂系统背后隐藏的秘密,有助于人们更好地理解此类系统及其长期发展趋势。
一个对人类至关重要的复杂系统是地球气候,真锅淑郎揭示了地球大气中二氧化碳含量的增加如何导致地球表面温度升高。真锅淑郎介绍:“在20世纪60年代初,我们开发了一个大气辐射对流模型,并探索了水蒸气、二氧化碳和臭氧等温室气体在维持和改变大气热结构中的作用,这是科学家们对全球变暖长期研究的开始。随后的20世纪60年代末,我和同事开始开发一个大气-海洋-陆地耦合系统的大气环流模型,该模型最终成为模拟全球变暖的一个非常强大的工具。”
对一维模型的分析催生了三维气候模型,该模型于1975年面世,成为理解气候秘密道路上的又一个里程碑。哈塞尔曼创建了一个将天气和气候联系起来的模型,还开发出了新方法来鉴别自然现象和人类活动在气候变化中留下的“蛛丝马迹”。他发现,太阳辐射、火山颗粒或温室气体浓度的变化会在气候系统中留下独特的信号,这些信号可以鉴别出来,而这种识别“指纹”的方法也可以应用于人类对气候系统的影响。他的方法被用来证明大气温度的升高是由于人类排放的二氧化碳。
在这两位科学家研究的基础上,气候模型越来越精准。这些模型清楚地显示了温室效应在加速–自19世纪中叶以来,大气中二氧化碳的浓度增加了40%。几十万年来,地球大气中都没有这么多二氧化碳。而且,温度测量表明,过去150年全球变暖1℃。
到了1980年左右,人们对复杂系统的理解愈发深入。帕里西提出了他关于随机现象如何受隐藏规则支配的发现,这被认为是对复杂系统理论最重要的贡献之一。
他对自旋玻璃开展了深入研究。自旋玻璃是一种特殊类型的金属合金,其中铁原子随机混合进铜原子 格。每一个铁原子的行为都像一个小磁铁,受到靠近它的其他铁原子的影响。在普通磁铁中,所有自旋都指向同一方向,但在自旋玻璃中,一些自旋对想要指向同一方向,而另一些自旋对想要指向相反方向–那么它们如何找到最佳方向呢?
自旋玻璃的奇特性质为复杂系统提供了一个模型,在这些系统中,各个部分必须在各种反作用力间达到平衡。帕里西对自旋玻璃结构的基本发现非常深刻,使人们能够理解和描述许多不同的、显然完全随机的材料和现象,不仅可用于物理学领域,而且在数学、生物学、神经科学和机器学习等领域也“大显身手”。
诺贝尔物理学奖委员会主席、瑞典皇家科学院院士托尔斯·汉斯·汉森强调说:“这3位科学家的发现获得了诺贝尔奖的认可,表明我们对气候的认识建立在坚实的科学基础上,而且基于对观测的严谨分析。他们的发现有助于我们更深入地了解复杂物理系统的性质和演化。”
化学奖:他们的巧妙工具构建了分子
构建分子是一门困难的艺术。今年的诺贝尔化学奖颁给了德国科学家本亚明·利斯特和美国科学家戴维·麦克米伦,以表彰他们在“发展不对称有机催化”方面作出的卓越贡献。利斯特和麦克米伦开发出一种精确的分子构建新工具–有机催化剂,这一工具对药物研究产生了巨大影响,并使化学学科更加“绿色”。
许多研究领域和行业都依赖于化学家构建分子的能力,这些分子可以形成弹性及耐用的材料,或者将能量储存在电池中,或者在医学领域实现抑制疾病发展–以上这些工作都需要催化剂。
催化剂是控制和加速化学反应的物质,但不会成为最终产品的一部分。例如,汽车中的催化剂将废气中的有毒物质转化为无害分子;我们的身体也包含数以千计的酶形式的催化剂,它们可以分解出生命所必需的分子。
因此,催化剂被称为化学家的“基本工具”。但长期以来研究人员认为,原则上只有两种催化剂可用:金属和酶。利斯特和麦克米伦此次被授予2021年诺贝尔化学奖,正是因为他们在2000年独立开发了第三种催化剂–不对称有机催化,建立在有机小分子的基础上。
诺贝尔化学奖委员会主席约翰·阿克维斯特表示:“这个催化概念既简单又巧妙,事实上很多人都想知道,为什么我们没有早点儿想到它。”
有机催化剂有一个稳定的碳原子框架,活性化学基团可以附着在碳原子上。有机催化剂通常由氧、氮、硫或磷等常见元素组成,这意味着这些催化剂既环保又廉价。
有机催化剂使用范围的迅速扩大,主要是由于它们能够驱动不对称催化。在构建分子时,经常会形成两种不同的分子,就像我们的手一样,它们是彼此的镜像。化学家通常只需要其中一种,尤其是在生产药品时。
自2000年以来,有机催化以惊人的速度发展。利斯特和麦克米伦迄今仍然是该领域的领导者,他们已经证明有机催化剂可用于驱动多种化学反应。
利用这些反应,研究人员现在可以更有效地构建很多东西,从新药物到可在太阳能电池中捕获光的分子。可以说,通过这种方式,有机催化剂正在为人类带来最大的利益。
——江苏科技 刘霞 张佳欣 张梦然
声明:本站部分文章内容及图片转载于互联 、内容不代表本站观点,如有内容涉及侵权,请您立即联系本站处理,非常感谢!