转轮技术存在的问题
并不是所有废气都能处理
从吸附的原理上看,转轮仍然是遵从经典的吸附理论:吸附-脱附(再生)-冷却-再吸附。
对一些不易处理的废气,如易聚合的烯烃炔烃组分(脱附时容易聚合堵塞)、苯乙烯、涂装行业UV漆的聚丙烯酸甲酯、聚丙烯酸乙酯等,照样无能为力。
为此,转轮生产厂家在设计时都会要求用户提供废气的成分和浓度,根据废气中各成分的分子动力学直径,来选择沸石分子筛,然后再把适合废气成分的分子筛按比例搭配,制成转轮的吸附层,这样,转轮就能准确地进行废气处理,达到用户的要求。但厂家的供货周期都较长,这实际上也是一个制造加工精细化的问题。
设计人员在设计转轮风速时,要根据气体的浓度进行选择。由于采用转轮处理的废气浓度一般都较低,所以可以采用较大的风速。但转轮的风速不是随意提升的,也必须考虑阻力问题。因此,转轮的吸附层厚度最大也不会超过500mm。
设备制造依赖进口
国内目前采用的转轮技术和设备绝大部分是从日本进口或采用日本技术生产的。
转轮虽属固定移动床的范畴,但其与普通的固定床不同,转轮在运行时会将处理系统内所有部分的固定床都旋转起来,这就导致运行时的能耗会增加;把普通固定床用于气流切换的阀门变成了与吸附单元硬摩擦的密封件,并将这些密封件固定在不同的位置,用于和旋转的每个吸附单元进行接触,以实现气体的切换。
这种改变,增加了设备制造的难度,尤其是密封件,国内很少生产,基本依赖进口。
高温脱附造成能源浪费
不少转轮的脱附都是采用高温(180℃~200℃)脱附,这不仅造成了能源浪费,也不利于资源回收。即使为了与后续的催化燃烧相衔接,也没必要采用高温去脱附。可以采用低温脱附后对脱附气再加热,这样就能实现节能。因为此时省去了对整个吸附系统加热的能量,同时采用较低的温度脱附,也省去了对床层进行冷却的能量。
提醒:对于含氯的挥发性有机物,在采用转轮浓缩进行处理后,不可再进行催化燃烧,因为那样将会产生毒性更强的光气或二噁英。
转轮技术需改进的地方
转轮不论从结构还是运行方面,都存在可以改进的地方,但最应该改进的地方是吸附剂。
众所周知,分子筛的吸附容量要比活性炭差得多,且活性炭本身属于非极性吸附剂,疏水性能远大于沸石。如果将分子筛改成活性炭吸附剂,在同等条件下,其浓缩比会成倍地提高。转轮之所以采用沸石分子筛作吸附剂,主要是利用其不同型号的分子筛可以吸附不同物质的特性,此外,还利用了其在高温下仍然具有较好的吸附能力。
如果在炭基吸附剂上进行选择或改性处理,使活性炭具有与分子筛相近的性能特点,如:消除活性炭上的活性点以避免其低温催化带来的运行安全隐患;改变活性炭的孔径大小及分布等,以增强其对不同VOCs分子的吸附性能。
实际上,目前市面上已经出现了这种活性炭,如用于油气回收的中孔活性炭。如果结合吸附质的分子动力学直径,按照孔径大小进行分类,分别制成模块,用这些模块设计成固定床,则会收到比转轮还要好的效果。
//总结//
综上所述,沸石转轮之所以能够在短时间内对活性吸炭固定床的浓缩工艺产生冲击,除了商业上的考量之外,根本原因是由于转轮的运行特点和吸附剂类型更适合粗放的脱附条件和控制模式。
如能够对VOCs脱附规律、活性炭改性和复配技术进行更深入的研究,开发出一种集成装置,再在智能化方面做些研发,可以相信,活性炭固定床毫无疑问是治理VOCs污染更理想的选择。
声明:本站部分文章内容及图片转载于互联 、内容不代表本站观点,如有内容涉及侵权,请您立即联系本站处理,非常感谢!