基于分数低阶协方差谱的频谱感知算法研究及其FPGA实现

摘 要:在对非高斯噪声情况下主用户频谱感知问题的理论研究之上,采用α稳定分布模型描述认知通信系统的非高斯噪声,给出了一种基于分数低阶协方差的感知方法,并采用分数低阶协方差谱对α稳定分布噪声下的主用户信号进行了谱估计,较好地解决了在非高斯噪声情况下传统的功率谱估计性能失效的问题。在此基础上针对FPGA的特性,进一步优化了算法,在FPGA上设计并实现了基于该算法的感知系统。系统利用FPGA产生中心频率为25 MHz、带宽为12.5 MHz的QPSK信号和特征指数为1的α稳定分布噪声作为主用户信号,设计相应的数字信号处理模块,并在此系统中验证了基于分数低阶协方差的感知方法能够有效地从α稳定分布噪声中检测出主信号的存在。该系统运行稳定,可移植性强,适用于不同的主用户频谱检测方案在此系统上进行实现与验证。

TN925

A

10.16157/j.issn.0258-7998.173280

中文引用格式:赵海杨,包亚萍,朱晓梅,等. 基于分数低阶协方差谱的频谱感知算法研究及其FPGA实现[J].电子技术应用,2018,44(3):43-46.

英文引用格式:Zhao Haiyang,Bao Yaping,Zhu Xiaomei,et al. Research and FPGA implementation of spectrum sensing algorithm based on fractional lower order covariance spectrum[J]. Application of Electronic Technique,2018,44(3):43-46.

0 引言

长期以来,传统的频谱管理与划分采用静态频谱分配方式[1],导致无线频谱利用率低下,同时研究发现,即使是那些被授权了的频段,平均利用率也仅有15%~85%。为了解决频谱资源匮乏的问题,认知无线电(Cognitive Radio,CR)[2]的概念被提出,其核心观点就是在不影响主用户工作的前提下,对空闲频段进行重复利用,提高无线频谱的利用率。

1 频谱感知算法

1.1 系统模型

在认知无线电系统中,频谱感知的目的是次级用户感知和发现空闲频谱,从而提高频谱的资源利用率。因此,可以用二元假设检验来描述频谱感知问题,模型定义为:

1.2 α稳定分布噪声模型

对于α稳定分布,没有闭式的概率密度函数,通常用它的特征函数给出,表达式为:

1.3 基于分数低阶协方差的感知方法

分数低阶协方差是一种描述α分布随机过程之间关系的分数低阶统计量,服从联合α稳定分布的两个随机变量X和Y,其分数低阶协方差定义为:

1.4 算法优化

从MATLAB仿真实验(具体内容见第3节)总体上发现,实验效果与统计矩P值有关,而且P值越小,从噪声中分离主信号的效果越好,当P趋近于0时,感知效果明显提高,此时分数低阶自相关表达式完全取决于输入信号x(n)的符号,而与其大小不再有关系,这样在实现算法时就可以大幅度简化。令u(n)=sign(n),u(n)的傅里叶变换为X(w),则优化过的分数低阶自相关函数和分数低阶协方差谱表达式为:

用频谱模的平方去替代功率谱,大大简化了程序,奠定了在FPGA系统中实现的基础。

2 基于FPGA频谱感知系统设计

系统主要分为3个部分的设计,即信号源模块、信号处理模块和显示模块的设计。系统的设计框图如图1所示,信号处理模块是系统设计的核心,主要完成频谱感知算法的设计。

2.1 信号源模块

射频信号可以通过一些宽带射频接收器接收,比如常用的USRP,但这些设备通常集成度高,价格昂贵,再次开发难度大。针对这一问题,系统利用FPGA产生射频接收机所接收的信号作为主用户信号,模块框图如图2所示,这里QPSK调制信号作为主信号,在其基础上添加α分布加性噪声。为了更接近实际无线电环境中的信号,这里设计的QPSK信号中心频率为25 MHz,带宽为12.5 MHz,添加的噪声为特征参数α=1的α稳态分布随机噪声。

2.2 信号处理模块

信号处理模块实现对分数低阶协方差谱估计的实现。设计框图如图3所示,其中x(n)为前端射频接收机所接收的信号,在这里为信号源模块所产生的混有α稳定分布随机噪声的QPSK调制信号,首先取信号的符号得到u(n),对其做快速傅里叶变换(FFT),再进行取模操作,得到分数低阶协方差谱S(w)。

2.3 显示模块

3 仿真及实验验证

从图5中可以发现,利用传统功率谱估计的算法难以检测出主用户信号。当P=0.8时,统计阶数为1.6,大于α值,统计量不存在,理论上检测不出来,从图中也可以看出,检测效果非常不明显。P=0的分数低阶协方差谱估计明显优于P=0.4的谱估计。通过仿真可以发现,分数低阶协方差算法能够有效地从α稳定分布噪声中检测出主信号的存在,并且当P值越小时,检测的效果越好。

液晶屏显示界面如图6所示,显示了算法处理前的原始QPSK信号频谱和混有α噪声信号的频谱,以及分数低阶协方差统计量处理后的频谱,其处理结果与上述结果相同。

4 结论

目前关于频谱感知的研究基本上是理论与仿真,在实物平台上的验证和实现并不多见。基于FPGA设计的频谱感知系统可移植性强,适用于不同的主用户频谱检测方案在此系统上进行实现与验证。

参考文献

[1] KHAN A A,REHMANI M H,REISSLEIN M.Cognitive radio for smart grids: survey of architectures, spectrum sensing mechanisms, and networking protocols[J].Communications Surveys & Tutorials.IEEE,2016,18(1):860-898.

[2] Sun Hongjian,NALLANATHAN A,Wang Chengxiang,et al.Wideband spectrum sensing for cognitive radio networks: a survey[J].IEEE Wireless Communications,2013,20(2):74-81.

[3] GEORGIADIS A T,MULGREW B.Adaptive Bayesian decision feedback equaliser for alpha-stable noise environments[J].Signal Processing,2001,81(8):1603-1623.

[4] 朱晓梅.认知无线电系统中非高斯噪声背景下频谱感知算法研究[D].南京:南京邮电大学,2014.

[5] Zhu Xiaomei,Zhu Weiping,CHAMPAGNE B.Spectrum sensing based on fractional lower order moments for cognitive radios in α -stable distributed noise[J].Signal Processing,2015,111(C):94-105.

[6] 孙永梅,邱天爽,李晖,等.?琢稳定分布过程的谱分析方法[J].大连交通大学学 ,2010,31(4):9-12.

赵海杨,包亚萍,朱晓梅,吴体昊

(南京工业大学 计算机科学与技术学院,江苏 南京211816)

声明:本站部分文章内容及图片转载于互联 、内容不代表本站观点,如有内容涉及侵权,请您立即联系本站处理,非常感谢!

(0)
上一篇 2018年3月15日
下一篇 2018年3月15日

相关推荐