传统的人工智能视觉系统由于其各功能组件在物理上的分离导致了数据访问的延迟以及相对较高的功耗。人类从外界获取信息的途径80%依赖于视觉,视 膜不仅可以探测到光刺激,并且可以进行初步的光信号处理,这种高效的视觉感知和认知学习过程启发了未来人工视觉系统的发展。在此背景下,集传感、记忆和处理功能于一体的神经形态智能光电传感器件已经成为近年来的前沿研究热点。
最新的研究表明神经形态智能光电传感器件有望从根本上解决当前人工视觉系统面临的瓶颈性难题。然而,现有的智能光电传感器件主要基于电荷俘获/去俘获的物理机制,存在着写入非线性度大、非易失性差、材料硅基兼容性差等等问题,如何寻找新颖非易失光电物理效应以及如何设计高性能光电传感器件仍是该领域面临的难点。
图1 紫外光辐照/电解质门控实现了VO2的非易失性可逆调控
二氧化钒(VO2)是一种典型的强关联氧化物,存在多种同分异构相以及由于氧含量的细微差异导致的丰富VOx相,研究显示通过电场、光场、压力场等外场调控可以实现相与相之间转换。研究团队通过激光分子束外延方法生长了高质量的VO2/Al2O3薄膜,将其制备成光电晶体管结构并进行了光电测试。团队发现VO2薄膜在紫外光辐照下发生了非易失变化,而在可见光照射下只有瞬态的光电响应。加大紫外光辐照剂量甚至可以诱导VO2非易失相变,由绝缘单斜相向金属金红石相转变。系列表征结果表明了这主要由于紫外光辐照在VO2薄膜中产生了氧空位,而光子能量低于其氧空位激活能的可见光只产生瞬态的光电响应。在复位过程中,团队提出了利用电解质门控的方法将氧离子插入到氧缺失薄膜的方案。因此,通紫外光辐照和电解质调控VO2中氧的脱出/嵌入,可以实现对其电导的可逆非易失性调控,进而设计了智能紫外光电传感器件。
图2 硅晶圆上生长的VO2薄膜器件性质
此外,研究团队在硅晶圆上通过磁控溅射技术生长了大面积VO2薄膜,并将其制备成神经形态传感器件阵列。通过随机抽取其中100个器件进行测试,结果证明了薄膜展现出了良好的均匀性。在硅晶圆上生长的VO2薄膜具有与外延生长的VO2薄膜类似的光致非易失相变特性和多态可逆调控特性,说明了该新原理器件具有大规模集成潜力。进一步研究表明,沟道电流非易失变化与紫外线照射剂量呈现近似线性的关系,这为将来应用打下了良好基础。
图3 基于VO2的神经形态紫外光电传感器件构建的人工神经 络进行图像识别演示
研究团队基于新型的VO2神经形态光电传感器件构建了人工神经 络并对标准的MNIST手写数字图像进行识别,该神经形态紫外光电传感器件可以对随机引入RGB高斯噪声的图像进行预处理,并选择性识别其中包含的紫外信息。对于包含RGB高斯噪声的图像,识别准确率仅达到24%。相比之下,利用基于VO2的神经形态光电传感器对紫外光信息进行预处理后,图像的识别准确率达到93%,与原始MNIST的识别准确率相同。
论文链接:
https://www.nature.com/articles/s41467-022-29456-5
声明:本站部分文章内容及图片转载于互联 、内容不代表本站观点,如有内容涉及侵权,请您立即联系本站处理,非常感谢!