排气系统模态影响因素研究及其应用

1模态影响因素分析

图1为某车型全模态分析模型,其中软连接与橡胶吊耳以及悬置采用CBUSH单元进行模拟,隔板与消声器外壳采用CWELD进行模拟,焊缝和吊钩采用shell单元模拟,法兰采用四面体单元模拟。

1.1总体思路

1.2分析及结论

1.2.1振型影响因素分析

1.自由模态影响因素

1)吊钩影响

去掉吊钩的模型如图3,将此模型模态与原系统模态进行相关性分析,分析得出振型相关性良好(见图4),由此得出吊钩对模态振型的影响甚微。

2)法兰影响

在1)模型基础上再去掉法兰(见图5),此模型与1)中模型做相关性分析,得出只要连接足够结实,法兰对振型影响甚微(见图6)。

图6 去掉吊钩和法兰的模型与去掉吊钩模型的

3)催化器影响

在2)模型基础上再去掉催化器(见图7),此模型与2)中模型做相关性分析,得出催化器对振型影响甚微(见图8)。

4)前消声器影响

在3)模型基础上去掉前消声器(见图9),此模型与3)模型相关性分析得出:前消声器主要对60Hz以上振型影响较大,即影响高频部分振型(见图10)。

5)后消声器影响

在4)基础上去掉后消声器结构(见图11), 与4)中模型做相关性分析得出:后消声器对振型影响不大,对高频稍微有影响(见图12)。

6)管路影响

5)中模型与原自由模态模型做相关性分析,目的是研究管路对模态振型影响,分析得出:管路主要影响排气系统60Hz前振型,即低频部分振型(见图13)。

7)软连接影响

调整软连接刚度后与原模型进行相关性分析,分析得出如果软连接刚度变化较大,则对整个频率段的振型均有影响(结果见图14)。

2.约束影响

1)橡胶吊耳影响对自由模态模型加橡胶吊耳约束后(模型见图15) 与原模型进行相关性分析,分析得出橡胶吊耳主要影响60Hz前振型,即低频振型(结果见图16)。

2)动力总成影响

在1)基础上对热端加动力总成约束(模型见图17),与原模型进行相关性分析得出:除热端的局部模态外,其他模态振型均不受影响,因此动力总成对模态振型没有影响(结果见图18)。

综上所述,管路布置对排气系统低频模态振型起决定性作用,中间消声器对高频振型起决定性作用,软连接刚度参数对整个频率振型有较大影响,橡胶吊耳对低频模态振型有较大影响,其他件对模态振型影响甚微。因此在前期布置时,应重点考虑管路走向及中间消声器的位置。

1.2.2频率影响分析

对以上的模型进行频率统计,研究其对频率的影响,其结果见图19。在 低频(70Hz之前) 各个零部件对频率的敏感度影响均小于5Hz,在高频(70Hz以上) 法兰、中消、后消及软连接刚度参数对频率影响均较大,法兰影响最大,其次为中消。若后期产生高频振动问题,可以考虑通过以上敏感件调整频率,而低频问题从改变振型考虑比较有效,调频率效果不大。

2 某车型排气问题案例

2.1问题及原因

某车型在2500rpm左右车内出现轰鸣,对车内噪声阶次分析,车内2500rpm处轰鸣主要贡献量为4阶噪声,对应频率为166Hz左右,测试结果如图20所示。经排查发现,在3档pot工况,车内噪声与软连接后吊钩相关性较好,脱开吊钩后,轰鸣消失。经测试发现此吊钩车身侧振动在169Hz处有一共振带,如图21所示。经排查排气系统模态(165Hz)和车身纵梁(170Hz)频率接近,存在共振。

2.2解决方法及结论

由于后期排气系统很多部件更改起来比较困难,通过上面对排气系统敏感件的分析可以得出,在高频段要想调开排气频率,最简单的办法就是更改软连接刚度,从而避开与车身纵梁的频率。对软连接刚度进行调整后,经测试驾驶员右耳声压级从69.7dB降到64.9dB,声压级降低约5dB,结果见图22。

3 结论

对振型的影响:

(1)管路布置对排气系统低频模态振型起决定性作用;

(2)中间消声器对高频振型起决定性作用;

(3)软连接刚度参数对整个频率振型有较大影响;

(4)橡胶吊耳对低频模态振型有较大影响;

(5)其他部件对模态振型影响甚微;

对频率的影响:

(1)在低频(70Hz之前)各个零部件对频率的敏感度影响均小于5Hz;

(2)在高频(70Hz以上)法兰、中消、后消及软连接刚度参数对频率影响均较大,法兰影响最大,其次为中消。

因此在前期布置时,应重点考虑管路走向及中间消声器的位置,若后期产生高频振动问题,可以考虑通过以上敏感件调整频率,而低频问题从改变振型考虑比较有效,调频率效果。

声明:本站部分文章内容及图片转载于互联 、内容不代表本站观点,如有内容涉及侵权,请您立即联系本站处理,非常感谢!

(0)
上一篇 2022年5月26日
下一篇 2022年5月26日

相关推荐