JVM垃圾回收器

垃圾收集器发展史

有了虚拟机,就一定需要收集垃圾的机制,这就是 Grabage Collection,对应的产品我们称为 Garbage Collector。

  • 1993 年随 JDK 1.3.1 一起来的是串行方式的 Serial GC,它是第一款 GC。ParNew 垃圾收集器是 Serial 收集器的多线程版本。
  • 2002 年 2 月 26 日,Parallel GC 和 Concurrent Mark Sweep GC 跟随 JDK 1.4.2 一起发布。
  • Parallel GC 在 JDK 6 之后成为 HotSpot 默认 GC。
  • 2012 年,在 JDK 1.7u4 版本中,G1 可用。
  • 2017 年,JDK 9 中 G1 变成默认的垃圾收集器,以替代 CMS。
  • 2018 年 3 月,JDK 10 中 G1 垃圾回收器的并行完整垃圾回收,实现并行性来改善最坏情况下的延迟。
  • 2018 年 9 月,JDK 11 发布。引入 Epsilon 垃圾回收器,又被称为 ”No-Op“(无操作)
  • 2019 年 3 月,JDK 12 发布。增强 G1,自动返回未用堆内存给操作系统。同时,引入 Shenandoah GC,是一个低停顿时间的 GC(Experimental)。
  • 2019 年 9 月,JDK 13 发布。增强 ZGC,自动返回未用堆内存给操作系统。
  • 2020 年 3 月,JDK 14 发布。删除 CMS 垃圾回收器。拓展 ZGC 在 macOS 和 Windows 上的应用。
  • 两个收集器间有连线,表明它们可以搭配使用:Serial / Serial Old 、Serial / CMS 、ParNew / Serial Old 、 ParNew / CMS 、Parallel Scavenge / Serial Old 、Parallel Scavenge / Parallel Old 、G1
  • 其中 Serial Old 作为 CMS 出现 ”Concurrent Mode Failure“ 失败的后备预案。
  • (红色虚线)由于维护和兼容性测试的版本,在 JDK 8 时将 Serial + CMS、ParNew + Serial Old 这两个组合声明为废弃(JEP 173),并在 JDK 9 中完全取消了这些组合的支持(JEP 214),即,移除了这些组合。
  • (绿色虚线)JDK 14 中:弃用 Parallel Scavenge 和 Serial Old 组合(JEP 366)
  • (青色虚线)JDK 14中:删除 CMS 垃圾回收器(JEP 363)
  • 7 款经典的垃圾回收器

    串行回收器:Serial、Serial Old

    并行回收器:ParNew、Parallel Scavenge、Parallel Old

    并发回收器:CMS、G1

    7 款经典的垃圾回收器与垃圾分代之间的关系

    新生代收集器:Serial、ParNew、Parallel Scavenge

    老年代收集器:Serial Old、Parallel Old、CMS

    整堆垃圾收集器:G1

    名词解释:

    Stop一the一World,简称STW,指的是Gc事件发生过程中,会产生应用程序的停顿

    如何查看默认的垃圾回收器

    -XX:+PrintCommandLineFlags 查看命令行相关参数(包含使用的垃圾收集器)

    java -XX:+PrintCommandLineFlags -version

    使用命令行指令: jinfo -flag 相关垃圾回收器参数 进程 ID

    $ jinfo -flag UseParallelGC 58951 -XX:-UseParallelGC $ jinfo -flag UseParallelOldGC 58951 -XX:-UseParallelOldGC $ jinfo -flag UseG1GC 58951 -XX:-UseG1GC $ jinfo -flag UseConcMarkSweepGC 58951 -XX:+UseConcMarkSweepGC

    Serial 回收器:串行回收

    Serial 收集器是最基本、历史最悠久的垃圾收集器了。JDK 1.3 之前回收新生代唯一的选择。

    Serial 收集器作为 HotSpot 中 Client 模式下的默认新生垃圾收集器。

    Serial 收集器采用复制算法、串行回收和 STW 机制的方式执行内存回收。

    除了年轻代之外,Serial 收集器还提供用于执行老年代垃圾收集的 Serial Old 收集器。Serial Old 收集器同样也采用了串行回收和 STW 机制,只不过内存回收算法使用的是标记-压缩算法。

  • Serial Old 是运行在 Client 模式下默认的老年代的垃圾回收器。
  • Serial Old 在 Server 模式下主要有两个用途:①与新生代的 Parallel Scavenge 配合使用 ②作为老年代 CMS 收集器的后备垃圾收集方案。
  • 这个收集器是一个单线程的收集器,但它的 ”单线程“ 的意义并不仅仅说明它只会使用一个 CPU 或一条收集线程去完成垃圾收集工作,更重要的是在它进行垃圾收集时,必须暂停其他所有的工作线程,直到它收集结束。

    优势:简单而高效(与其他收集器的单线程比),对于限定单个 CPU 的环境来说,Serial 收集器由于没有线程交互的开销,专心做垃圾收集自然可以获得最高的单线程收集效率。

  • 运行在 Client 模式下的虚拟机是个不错的选择。
  • 在用户的桌面应用场景中,可用内存一般不大(几十 MB 至一两百 MB),可以在较短时间内完成垃圾回收(几十 ms 至一百多 ms),只要不频繁发生,使用串行回收器是可以接受的。

    参数配置

    在 HotSpot 虚拟机中,使用 -XX:UseSerialGC 参数可以指定年轻代和老年代都是用串行收集器。

  • 等价于新生代使用 Serial GC,且老年代使用 Serial Old GC。
  • 总结:这种垃圾收集器大家了解,现在已经不用串行的了。而且在限定单核 CPU 才可以用。现在都不是单核的了。

    对于交互较强的应用而言,这种垃圾收集器是不能接受的。一般在 Java Web 应用程序中是不会采用串行垃圾收集器的。

    ParNew 回收器:并行回收

    如果说 Serial GC 是年轻代中的单线程垃圾收集器,那么 ParNew 收集器则是 Serial 收集器的多线程版本。

  • Par 是 Parallel 的缩写,New:只能处理的是新生代
  • ParNew 收集器除了采用并行回收的方式执行内存回收外,两款垃圾收集器之间几乎没有任何区别。ParNew 收集器在年轻代中同样也是采用复制算法、STW 机制

    ParNew 是很多 JVM 运行在 Server 模式下新生代的默认垃圾收集器。

  • 对于新生代,回收次数频繁,使用并行方式高效。
  • 对于老年代,回收次数少,使用串行方式节省资源。(CPU并行需要切换线程,串行可以省去切换线程的资源)
  • 由于 ParNew 收集器是基于并行回收,那么是否可以断定 ParNew 收集器的回收效率在任何场景下都会比 Serial 收集器更高效?

  • ParNew 收集器运行在多 CPU 环境下,由于可以充分利用多 CPU、多核心等物理硬件资源优势,可以更快速地完成垃圾收集,提升程序的吞吐量。
  • 但是在单个 CPU 的环境下,ParNew 收集器不比 Serial 收集器更高效。虽然 Serial 收集器是基于串行回收,但是由于 CPU 不需要频繁地做任务切换,因此可以有效避免多线程交互过程中产生的一些额外开销。
  • 除 Serial 外,目前只有 ParNew GC 能与 CMS 收集器配合工作。

    参数配置

    在程序中,开发人员可以通过选项 -XX:+UseParNewGC 手动指定使用 ParNew 收集器执行内存回收任务。它表示年轻代使用并行收集器,不影响老年代。

    -XX😛arallelGCThreads 限制线程数量,默认开启和 CPU 数相同的线程数。

    Parallel 回收器:吞吐量优先

    HotSpot 的年轻代中除了拥有 ParNew 收集器是基于并行回收以外,Parallel Scavenge 收集器同样也采用了复制算法、并行回收和 STW 机制。

    那么 Parallel 收集器的出现是否多此一举?

  • 和 ParNew 收集器不同,Parallel Scavenge 收集器的目标是达到一个可控的吞吐量(Throughput),它也被称为吞吐量优先的垃圾收集器。
  • 自适应调节策略也是 Parallel Scavenge 与 ParNew 的一个重要区别。
  • 高吞吐量则可以高效地利用 CPU 时间,尽快完成程序的运算任务,主要适合在后台运算而不需要太多交互的任务。因此,常见在服务器环境中使用。例如,那些执行批量处理、订单处理、工资支付、科学计算的应用程序。

    Parallel 收集器在 JDK 1.6 时提供了用于执行老年代垃圾收集的 Parallel Old 收集器,用来代替老年代的 Serial Old 收集器。

    Parallel Old 收集器采用了标记-压缩算法,但同样也是基于并行回收和 STW 机制。

    在吞吐量优先的应用场景中,Parallel 收集器和 Parallel Old 收集器的组合,在 Server 模式下的内存回收性能很不错。

    在 Java 8 中,默认也是此垃圾收集器。

    参数配置

  • -XX:+UserParallelGC 手动指定年轻代使用 Parallel 并行收集器执行内存回收任务。
  • -XX:+UseParallelOld 手动指定老年代都是使用并行回收收集器。
  • 上面两个参数,分别适用于新生代和老年代。默认 JDK 8 是开启的。
  • 上面两个参数,默认开启一个,另一个也会被开启。(互相激活)
  • -XX😛arallelGCTheads 设置年轻代并行收集器的线程数。一般地,最好与 CPU 数量相等,以避免过多的线程数影响垃圾收集性能。
  • 在默认情况下,当 CPU 数量小于 8 个,ParallelGCThreads 的值等于 CPU 数量。
  • 当 CPU 数量大于 8 个,ParallelGCThreads 的值等于 3 + ((5 * CPU_COUNT) / 8 )。
  • -XX:MaxGCPauseMillis 设置垃圾收集器最大停顿时间(即 STW 的时间)。单位是毫秒。
  • 为了尽可能地把停顿时间控制在 MaxGCPauseMillis 以内,收集器在工作时会调整 Java 堆大小或者其他一些参数。
  • 对于用户来讲,停顿时间越短体验越好。但是在服务端,我们注重高并发,整体的吞吐量。所以服务器端适合 Parallel,进行控制
  • 该参数使用需要谨慎。
  • -XX:GCTimeRatio 垃圾收集时间占总时间的比例(= 1 / (N + 1))。用于衡量吞吐量的大小。
  • 取值范围(0, 100)。默认值 99,也就是垃圾回收时间不超过 1%。
  • 与前一个 -XX:MaxGCPauseMillis 参数有一定的矛盾性。暂停时间越长,Radio 参数就容易超过设定的比例。
  • -XX:+UseAdaptiveSizePolicy 设置 Parallel Scavenge 收集器具有自适应调节策略。
  • 在这种模式下,年轻代的大小,Eden 和 Survivor 的比例、晋升老年代的对象年龄等参数会被自动调整,以达到在堆大小、吞吐量和停顿时间之间的平衡点。
  • 在手动调优比较困难的场合,可以直接使用这种自适应的方式,仅指定虚拟机的最大堆、目标的吞吐量(GCTimeRatio)和停顿时间(MaxGCPauseMillis),让虚拟机自己完成调度工作。
  • CMS 回收器:低延迟

    在 JDK 1.5 时期,HotSpot 推出了一款在强交互应用中几乎可认为有划时代意义的垃圾收集器:CMS(Concurrent-Mark-Sweep)收集器,这款收集器是 HotSpot 虚拟中第一款真正意义上的并发收集器,它第一次实现了让垃圾收集线程与用户线程同时工作。

    CMS 收集器的关注点是尽可能缩短垃圾收集时用户线程的停顿时间。停顿时间越短(低延迟)就越适合与用户交互的程序,良好的响应速度能提升用户体验。

  • 目前很大一部分的 Java 应用集中在互联 站或者 B/S 系统的服务端上,这类应用尤其重视服务的响应速度,希望系统停顿时间最短,以给用户带来较好的体验。CMS 收集器就非常符合这类应用的需求。
  • CMS 的垃圾收集算法采用 标记-清除 算法,并且也会 STW。

    不幸的是,CMS 作为老年代的收集器,却无法与 JDK 1.4.0 中已经存在的新生代收集器 Parallel Scavenge 收集器配合工作,所以在 JDK 1.5 中使用 CMS 来收集老年代的时候,新生代只能选择 ParNew 或者 Serial 收集器中的一个。

    在 G1 出现之前,CMS 使用还是非常广泛的,一直到今天,任然有很多系统使用 CMS GC。

    CMS 工作原理

    CMS 整个过程比之前的收集器要复杂,整个过程分为 4 个主要阶段,即初始标记阶段、并发标记阶段、重新标记阶段、并发清除阶段。

  • 初始标记(Initial-Mark)阶段:在这个阶段中,程序用所有的工作线程都将会因为 STW 机制而出现短暂的暂停,这个阶段的主要任务仅仅是标记出 GC Roots 能直接关联到的对象。一旦标记完成之后就会恢复之前被暂停的所有应用线程。由于直接关联对象比较小,所以这里的速度非常快
  • 并发标记(Concurrent-Mark)阶段:从 GC Roots 的直接关联对象开始遍历整个对象图的过程,这个过程耗时较长但是不需要停顿用户线程,可以与垃圾收集线程一起并发运行。
  • 重新标记(Remark)阶段:由于在并发标记阶段中,程序的工作线程会和垃圾收集线程同时运行或交叉运行,因此为了修正并发标记期间,因用户程序继续运作而导致标记产生变动的那一部分对象的标记记录,这个阶段的停顿时间通常会比初始标记阶段稍长一些,但也远比并发标记阶段的时间短。
  • 并发清除(Concurrent-Sweep)阶段:此阶段清理删除掉标记阶段的已经死亡的对象,释放内存空间。由于不需要移动存活对象,所以这个阶段也是可以与用户线程同时并发的。
  • 分析

    尽管 CMS 收集器采用的是并发回收(非独占式),但是在其初始化标记和再次标记这两个阶段中仍然需要执行 STW 机制暂停程序中的工作线程,不过暂停时间并不会太长,因此可以说明目前所有的垃圾收集器都做不到完全不需要 STW,只是尽可能的缩短暂停时间。

    由于最耗费时间的并发标记与并发清除阶段都不需要暂停工作,所以整体的回收是低延迟的。

    另外,由于在垃圾收集阶段用户线程没有中断,所以在 CMS 回收过程中,还应该确保应用程序用户线程有足够的内存可用。因此,CMS 收集器不能像其他收集器那样等到老年代几乎完全被填满了在进行收集,而是当堆内存使用率达到某一阈值时,便开始进行回收,以确保应用程序在 CMS 工作过程中依然有足够的内存空间支持应用程序运行。要是 CMS 运行期间预留的内存无法满足程序需要,就会出现一次 ”Concurrent Mode Failure“ 失败,这时虚拟机将启动后备预案:临时启用 Serial Old 收集器来重新进行老年代的垃圾收集,这样停顿时间就很长了。

    CMS 收集器的垃圾收集算法采用的是 标记-清除 算法,这意味着每次执行完内存回收后,由于被执行内存回收的无用对象所占用的内存空间极有可能是不连续的一些内存块,不可避免地将会产生一些内存碎片。那么 CMS 在为新对象分配内存空间时,将无法使用指针碰撞(Bump the Pointer)技术,而只能选择空闲列表(Free List)执行内存分配。

    有人会觉得既然 Mark Sweep 会造成内存碎片,那么为什么不把算法换成 Mark Compact 呢?

    答案其实很简单,因为当并发清除的时候,用 Compact 整理内存的话,原来的用户线程使用的内存还怎么用?要保证用户线程能继续执行,前提得是它运行的资源不受影响。Mark Compact 更适合 STW 这种场景下使用。

    优点

  • 并发收集
  • 低延迟
  • 缺点

  • 会产生内存碎片,导致并发清除后,用户线程可用的空间不足。在无法分配大对象的情况下,不得不提前触发 Full GC。
  • 对 CPU 资源非常敏感,在并发阶段,它虽然不会导致用户停顿,但是会因为占用了一部分线程而导致应用程序变慢,总吞吐量会降低。
  • 无法处理浮动垃圾,可能会出现 ”Concurrent Mode Failure“ 失败而导致另一次 Full GC 的产生。在并发标记阶段由于程序的工作线程和垃圾收集线程是同时运行或者交叉运行的,那么在并发标记阶段如果产生新的垃圾对象,CMS 将无法对这些垃圾对象进行标记,最终会导致这些新产生的垃圾对象没有被及时回收,从而只能在下一次执行 GC 时释放这些之前未被回收的内存空间。
  • 参数配置

  • -XX:+UseConcMarkSweepGC 手动指定使用 CMS 收集器执行内存回收任务。
  • 开启该参数后会自动将 -XX:+UseParNewGC 打开。即:年轻代使用 ParNew 收集器 + 老年代使用 CMS 收集器 + 老年代的备用收集器 Serial Old 收集器
  • -XX:CMSInitiatingOccupanyFraction 设置堆内存使用率的阈值,一旦到达该阈值,便开始进行回收。
  • JDK 5 及以前版本的默认值为 68,即当老年代的空间使用率达到 68% 时,会执行一次 CMS 回收。JDK 6 及以上的版本默认值为 92%。
  • 如果内存增长缓慢,则可以设置一个稍大的值,大的阈值可以有效降低 CMS 的触发频率,减少老年代回收的次数可以较为明显地改善应用程序性能。反之,如果应用程序内存使用率增长很快,则应该降低这个阈值,以避免频繁触发老年代串行收集器。因此通过该选项便可以有效降低 Full GC 的执行次数。
  • -XX:+UseCMSCompactAtFullCollection 用于指定在执行完 Full GC 后对内存空间进行压缩整理,以此避免内存碎片的产生。不过由于内存压缩整理过程无法并发执行,所带来的问题就是停顿时间变得更长了。
  • -XX:CMSFullGCsBeforeCompaction 设置在执行多少次 Full GC 后对内存空间进行压缩整理。
  • -XX😛arallelCMSThreads 设置 CMS 的线程数量。
  • CMS 默认启动的线程数是 (ParallelCMSThreads + 3) / 4
  • ParallelCMSThreads 是年轻代并行收集器(ParNew)的线程数。当 CPU 资源比较紧张时,受到 CMS 收集器线程的影响,应用程序的性能在垃圾回收阶段可能会非常糟糕。
  • 小结

    HotSpot 有这么多的垃圾回收器,那么如果有人问,Serial GC、Parallel GC、CMS GC 这三个 GC 有什么不同呢?

  • 如果你想要最小化地使用内存和并行开销,请选择 Serial GC
  • 如果你想要最大化应用程序的吞吐量,请选择 Parallel GC
  • 如果你想要最小化 GC 的中断或停顿时间,请选择 CMS GC
  • JDK 9 新特性:CMS 被标记为 Deprecate 了(JEP291)

  • 如果对 JDK 9 及以上版本的 HotSpot 虚拟机使用参数 -XX:+UseConcMarkSweepGC 来开启 CMS 收集器的话,用户会收到一个警告信息,提示 CMS 未来将会被去除。
  • JDK 14 新特性:去除 CMS 垃圾收集器(JEP363)

  • 移除了 CMS 垃圾收集器,如果在 JDK 14 中使用 -XX:+UseConcMarkSweepGC 的话,JVM 不会 错,只是给出警告,但是不会退出。JVM 会自动使用默认的 GC。
  • G1 回收器:区域化分代式

    1.既然我们已经有了前面几个强大的 GC,为什么还要发布 Garbage First(G1)GC?

    原因就在于对于应用程序所应用的业务越来越庞大、复杂,用户越来越多,没有 GC 就不能保证应用程序正常进行,而经常造成 STW 的 GC 又跟不上实际的需求,所以才会不断地尝试对 GC 进行优化。G1(Garbage First)垃圾回收器是在 Java 7 Update 4 之后引入的一个新的垃圾回收器,是当今收集器技术发展的最前沿成果之一。

    与此同时,为了适应现在不断扩大的内存和不断增加的处理器数量,进一步降低暂停时间(pause time),同时兼顾良好的吞吐量。

    官方给 G1 设定的目标是在延迟可控的情况下获得尽可能高的吞吐量,所以才担当起”全功能收集器“的重任与期望。

    2.为什么名字叫做 Garbage First(G1)呢?

    因为 G1 是一个并行回收器,它把堆内存分割成很多不相关的区域(Region)(物理上不连续的)。使用不同的 Region 来表示 Eden、Survivor0、Survivor1、老年代等。

    G1 GC 有计划地避免在整个 Java 堆中进行全区域的垃圾收集。G1 跟踪各个 Region 里面的垃圾堆积的价值大小(回收所获得的的空间大小以及回收所需时间的经验值),在后台维护一个优先列表,每次根据允许的收集时间,优先回收价值最大的 Region

    由于这种方式的侧重点在于回收垃圾最大量的区间(Region),所以我们给 G1 一个名字:垃圾优先(Garbage First)。

    概述

    G1(Garbage First)是一款面向服务端应用的垃圾收集器,主要针对配备多核 CPU 及大容量内存的机器,以极高概率满足 GC 停顿时间的同时,还兼具高吞吐量的性能特征。

    在 JDK 1.7 版本正式启用,移除了 Experimental 的标识,是 JDK 9 以后的默认垃圾回收器,取代了 CMS 回收器以及 Parallel + Parallel Old 组合。被 Oracle 官方称为 ”全功能的垃圾收集器“。

    与此同时,CMS 已经在 JDK 9 中被标记为废弃(Deprecated)。在 JDK 8 中还不是默认的垃圾回收器,需要使用 -XX:+UseG1GC 来使用。

    优势

    与其他的 GC 收集相比,G1 使用了全新的分区算法,其特定如下所示:

  • 并行与并发
  • 并行性:G1 在回收期间,可以有多个 GC 线程同时工作,有效利用多核计算能力。此时用户线程 STW
  • 并发性:G1 拥有与应用程序交替执行的能力,部分工作可以和应用程序同时执行,因此,一般来说,不会在整个回收阶段发生完全阻塞应用程序的情况。
  • 分代收集
  • 从分代上看,G1 依然属于分代型垃圾回收器,它会区分年轻代和老生代,年轻代依然有 Eden 区和 Survivor 区。但从堆的结构上看,它不要求整个 Eden 区、年轻代或者老年代都是连续的,也不再坚持固定大小和固定数量。
  • 堆空间分为若干个区域(Region),这些区域中包含了逻辑上的年轻代和老年代
  • 和之前的各类回收器不同,它同时兼顾年轻代和老年代。对比其他回收器,或者工作在年轻代,或者工作在老年代。
  • 空间整合
  • CMS:”标记-清除“ 算法、内存碎片、若干次 GC 后进行一次碎片整理
  • G1 将内存划分成为一个个的 Region。内存的回收是以 Region 作为基本单位的。Region 之间是复制算法,但整体上实际可看做是标记-压缩(Mark-Compact)算法,两种算法都可以避免内存碎片。这种特性有利于程序长时间运行,分配大对象时不会因为无法找到连续内存空间而提前触发下一次 GC。尤其是当 Java 堆非常大的时候,G1 的优势更加明显。
  • 可预测的停顿时间模型(即软实时 soft real-time)
  • 这是 G1 相对于 CMS 的另一大优势,G1 除了追求低停顿外,还能建立可预测的停顿时间模型,能让使用者明确指定在一个长度为 M 毫秒的时间片段内,消耗在垃圾收集上的时间不得超过 N 毫秒。
  • 由于分区的原因,G1 可以只选择部分区域进行内存回收,这样缩小了回收的范围,因此对于全局停顿情况的发生也能得到较好的控制。
  • G1 跟踪各个 Region 里面的垃圾堆积的价值大小(回收所获得的空间大小以及回收所需时间的经验值),后台维护一个优先列表,每次根据允许的收集时间,优先回收价值最大的 Region。保证了 G1 收集器在有限的时间内可以获取尽可能高的收集效率。
  • 相比于 CMS GC,G1 未必能做到 CMS 在最好情况下的延迟停顿,但是最差情况要好很多。
  • 缺点

    相较于 CMS,G1 还不具备全方位、压倒性优势。比如在用户程序运行过程中,G1 无论是为了垃圾收集产生的内存占用(Footprint)还是程序运行时的额外执行负载(Overload)都要比 CMS 要高。

    从经验上说,在小内存应用上 CMS 的表现大概率会优于 G1,而 G1 在大内存应用上则发挥其优势。平衡点在 6-8 GB 之间。

    参数配置

  • -XX:+UseG1GC 手动指定使用 G1 收集器执行内存回收任务。JDK 9 及以后默认开启。
  • -XX:G1HeapRegionSize 设置每个 Region 的大小。值是 2 的幂,范围是 1 MB 到 32 MB 之间,目标是根据最小的 Java 堆大小划分出约 2048 个区域。默认是堆内存的 1/2000。
  • -XX:MaxGCPauseMillis 设置期望达到的最大 GC 停顿时间指标(JJVM 会尽力实现,但不保证达到)。默认值是 200 ms。
  • -XX😛arallelGCThread 设置 STW 工作线程数的值。最多设置为 8。
  • -XX:ConcGCThreads设置并发标记的线程数。将 n 设置为并行垃圾回收线程数(ParallelGCThreads)的 1/4 左右。
  • -XX:InitiatingHeapOccupanyPercent 设置触发并发 GC 周期的 Java 堆占用率阈值。超过此值,就触发 GC。默认值是 45。
  • 常见操作步骤

    G1 的设计原则就是简化 JVM 性能调优,开发人员只需要简单的三步即可完成调优:

  • 第一步,开启 G1 垃圾收集器
  • 第二步:设置堆的最大内存
  • 第三步:设置最大的停顿时间
  • G1 中提供了三种垃圾回收模式:Young GC、Mixed GC 和 Full GC,在不同的条件下被触发。

    适用场景

  • 面向服务端应用,针对具有大内存、多处理器的机器。(在普通大小的堆里表现并不惊喜)
  • 最主要的应用是需要低 GC 延迟,并具有大堆的应用程序提供解决方案
  • 如:在堆大小约 6GB 或更大时,可预测的暂停时间可以低于 0.5 秒;G1 通过每次只清理一部分而不是全部的 Region 的增量式清理来保证每次 GC 停顿时间不会太长。
  • 用来替换掉 CMS 收集器,在下面的情况时,使用 G1 可能比 CMS 好:
  • 超过 50% 的 Java 堆被活动数据占用
  • 对象分配频率或年代提升频率变化很大
  • GC 停顿时间过长(长于 0.5 至 1 秒)
  • HotSpot 垃圾收集器里,除了 G1 以外,其他的垃圾收集器使用内置的 JVM 线程执行 GC 的多线程操作,而 G1 GC 可以采用应用线程承担后台运行的 GC 工作,即当 JVM 的 GC 线程处理速度慢时,系统会调用应用程序线程帮助加速垃圾回收过程。(啥意思?)
  • 分区 Region:化整为零

    使用 G1 收集器时,它将整个 Java 堆划分成约 2048 个大小相同的独立 Region 块,每个 Region 块大小根据堆空间的实际大小而定,整体被控制在 1MB 到 32 MB 之间,且为 2 的 N 次幂,即 1 MB,2 MB,4 MB,8 MB,16 MB,32 MB。可以通过 -XX:G1HeapRegionSize 设定。所有的 Region 大小相同,且在 JVM 生命周期内不会被改变。

    虽然还保留有新生代和老年代的概念,但新生代和老年代不再是物理隔离的了,它们都是一部分 Region(不需要连续)的集合。通过 Region 的动态分配方式实现逻辑上的连续。

    一个 Region 有可能属于 Eden、Survivor 或者 Old/Tenured 内存区域。但是一个 Region 只可能属于一个角色。图中的 E 表示该 Region 属于 Eden 内存区域,S 表示属于 Survivor 内存区域,O 表示属于 Old 内存区域。图中空白的表示未使用的内存空间。

    G1 垃圾收集器还增加了一种新的内存区域,叫做 Humongous 内存区域,如图中的 H 块。主要用于存储大对象,如果超过一个 Region 的50%,就放到 H。(这里老师讲解有误,在《JVM G1源码分析和调优》书中写到:对于大对象分为两类,一类是大于HeapRegionSize的一半,但是小于HeapRegionSize,即一个完整的堆分区可以保存,则直接从空闲列表直接拿一个堆分区,或者分配一个新的堆分区。如果是连续对象,则需要多个堆分区,思路同上,但是处理的时候需要加锁。)

    设置 H 的原因:

    对于堆中的大对象,默认直接会分配到老年代,但是如果它是一个短期存在的大对象,就会对垃圾收集器造成负面影响。为了解决这个问题,G1 划分了一个 Humongous 区,它用来专门存放大对象。**如果一个 H 区装不下一个大对象,那么 G1 会寻找连续的 H 区来存储。**为了能找到连续的 H 区,有时候不得不启用 Full GC。G1 的大多数行为都把 H 区作为老年代的一部分来看待。

    垃圾回收过程

    G1 GC 的垃圾回收过程主要包括如下三个环节:

  • 年轻代 GC(Young GC)
  • 老年代并发标记过程(Concurrent Marking)
  • 混合回收(Mixed GC)
  • (如果需要,单线程、独占式、高强度的 Full GC 还是继续存在的。它针对 GC 的评估失败提供了一种失败保护机制,即强力回收。)
  • Young GC → Young GC + Concurrent Marking → Mixed GC → Full GC

    应用程序分配内存,当年轻代的 Eden 区用尽时开始年轻代回收过程;G1 年轻代收集阶段是一个并行独占式收集器。在年轻代回收期,G1 GC 暂停所有应用程序线程,启动所线程执行年轻代回收。然后从年轻代区间移动存活对象到 Survivor 区间或者老年代区间,也有可能是两个区间都会涉及

    当堆内存使用达到一定值(默认 45%)时,开始老年代并发标记过程。

    标记完成马上开始混合回收过程。对于一个混合回收期,G1 GC 从老年区间移动存活对象到空闲区间,这些空闲区间也就成为了老年代的一部分。和年轻代不同,老年代的 G1 回收器和其他 GC 不同**,G1 的老年代回收器不需要整个老年代被回收,一次只需要扫描/回收一小部分老年代的 Region 就可以了**。同时,这个老年代 Region 是和年轻代一起被回收的。

    举个例子:一个 Web 服务器,Java 进程最大堆内存为 4 G,每分钟响应 1500 个请求,每 45 秒钟会新分配大约 2 G 内存。G1 会每 45 秒钟进行一次年轻代回收,每 31 个小时整个堆的使用率会达到 45 %,会开始老年代并发标记过程,标记完成后开始四到五次的混合回收。

    Remembered Set

  • 一个对象被不同区域引用的问题
  • 一个 Region 不可能是孤立的,一个 Region 中的对象可能被其他任意 Region 中的对象引用,判断对象存活时,是否需要扫描整个 Java 堆才能保证准确?
  • 在其他的分代收集器,也存在这样的问题(而 G1 更突出)
  • 声明:本站部分文章内容及图片转载于互联 、内容不代表本站观点,如有内容涉及侵权,请您立即联系本站处理,非常感谢!

    (0)
    上一篇 2022年5月2日
    下一篇 2022年5月2日

    相关推荐