平流式冷凝器的空气侧传热主要是通过翅片来进行的,因此要考虑翅片的肋片效率。
4、制冷剂侧压降和换热系数的计算 汽车空调平行流冷凝器传热性能实验研究
汽车空调换热器具有特殊性,其管带式冷凝器和平流式冷凝器均使用了带或不带内肋的多孔矩形扁管或三角形扁管。对于这两种异形管的相变传热机理,C-Y. Yang和Webb于1996年发表了CFC12在多孔矩形扁管内的摩擦阻力和传热系数的关联式[15][16]。
汽车空调冷凝器测试 上海汽车空调冷凝器测试
5、结果与分析
笔者采用编制的计算机程序对不同风速、不同结构参数的平行流式冷凝器的风阻与传热特性进行了计算,下面分别对各个参数的影响进行讨论。
空气换热系数随翅片高度的变化。当冷凝器在相同的扁管宽度、扁管数和迎面风速条件下,随着翅片高度的增加,相应的基于扁管基表面积的空气侧换热系数减小,但单位管长的总外表面积增加,由此可见,在传热温差一定的前提下,换热器综合性能比值随着百叶窗间距的增大而减小,翅片高度存在理论上的*优值。
空气侧换热系数和阻力随翅片间距的变化,随翅片间距的增大,换热器侧压降呈幂指数关系减小的趋势,相应地,基于扁管基表面积的换热系数也减小,但减小的幅度不一样,而且减小的幅度和其它几何因素也是密切相关的。为了提高换热器的换热效率,应该适当减小翅片间距,从而可以减小空气侧水力直径,有利于提高空气侧的传热系数,使换热器传热面积增加,换热能力也增加,但却引起阻力的增加,设计时应根据风机的流量阻力特性来选取合适的翅片间距。
在换热器其它入口参数条件不变,只改变空气进口迎面风速来考虑迎面风速对冷凝器性能的影响。从图5、6可以看出,对于一定结构的冷凝器,换热量在低速区增速较快,而空气侧阻力在高速区增速较快。换热量随迎面风速的变化可用空气侧换热系数随迎面风速的变化来反映。可以看出随着迎面风速的增加,换热系数增加趋于一定值,因而随着迎面风速的增加,换热量的增加趋于一定值。空气侧阻力随迎面风速的变化基本体现了二者成幂指数变化关系。对于不同结构的冷凝器均存在一个临界风速,当风速超过临界风速时,空气侧阻力增加剧烈而换热量趋于定值。在优化设计平流式冷凝器时,应合理选择结构型式,使常用风速低于临界风速。
6、结论考虑到行业的特殊性,随着汽车技术的发展,对汽车空调系统的紧凑性,所耗功率等的要求越来越高,而对紧凑性而言,换热器,冷却系统用风扇的体积重量是必须考虑的,一般情况下,风扇提供的风量、风压与其尺寸、所耗功率是成正比的,而对换热器而言,换热器要达到一定的散热量,换热器内的空气速度,换热面积等就必须达到一定的要求。因此,利用计算机仿真技术和实验研究,结合国内外对平行流式冷凝器的研究经验,通过对风速、翅片结构参数改变后对平行流式冷凝性能影响作了分析研究,为平行流式冷凝器的优化设计提供了重要参考。
汽车空调平行流冷凝器传热性能实验研究
声明:本站部分文章内容及图片转载于互联 、内容不代表本站观点,如有内容涉及侵权,请您立即联系本站处理,非常感谢!