此外,NV色心的极端敏感性和生物相容性(金刚石只是碳,因此没有表现出毒性),显示了纳米核磁共振测量的特殊前景,其中NV中心被耦合到与之感兴趣的有机和生物分子的核自旋的杂散场上[11]。因此,NV被定位为革命性的纳米磁共振成像技术,并提供了一种在环境条件下获得单分子3D图像的途径[12]。事实上,NV色心的单质子自旋探测已经被证实[13]。
NV场感测和纳米成像不限于静态场。现在,一些研究小组已经证明了基于NV探测和时变磁场的磁场扫描是由铁磁铁中的自旋波产生[14][15]或电流波动[16][17]。
为了进一步增加NV应用的长列表、长寿命的自旋状态、与外部场的可操作性以及与环境的可调谐相互作用(通过晶格工程)也使它们成为量子计算中信息单元“qubit”的***[18]。
量子计算和传统计算一样,可能需要将长寿命存储位与快速处理位分离。将长寿命的“内存”量子位(基于附近的氮原子或13c原子核自旋)与NV自旋的耦合[19][20][21]可以精确地提供这种内存和处理架构。超导磁通量子位(另一个强大的量子计算候选者)和NV色心之间的相干耦合也得到了证明[22],为量子处理和存储所需要的光学与微波之间读写的接口铺平了道路。
SRS产品在NV研究中的应用
在NV金刚石中进行光学检测磁共振实验的关键是扫描微波频率的能力。为了测量自旋态寿命,执行微波脉冲序列也很有用。SRS射频信号发生器(SG384和SG386)和矢量信号发生器(SG394和SG396)非常适合在NV-ODMR研究中的所需要的频率范围内产生微波。下面是使用SRS产品的NV相关参考的列表。
1. Optical magnetic imaging of living cells
使用设备: SG384 (+ amplifier)
声明:本站部分文章内容及图片转载于互联 、内容不代表本站观点,如有内容涉及侵权,请您立即联系本站处理,非常感谢!