图1谐波分流示意图
n次谐波下变压器阻抗:
Xs(n)=2πf(n)L(1)
n次谐波下电容器阻抗:
Xc(n)=1/2πf(n)L(2)
存在高次谐波时,由于f(n)的大,从而导致Xs(n)大及Xc(n)减少,从而导致谐波电流大量涌入电容器。假设电容器工作运行在满载电流,若加上谐波电流后.电容器运行电流大于1.3倍的额定电流,电容器将出现故障。
2.2与系统产生并联谐振
当大量的非线性负荷挂 运行时.将在电 产生严重的电压畸变和电流畸变。此时的谐波源相当于一个很大的电流源.其产生的谐波电流加在系统感抗和电容器的容抗之间,形成并联回路如图2所示。
图2并联谐振原理图
从图中可以看出谐波电流一部分流经Xs(n),一部分流经Xc(n),回路阻抗为:
当n为某次谐波时,电 感抗㈤等于电容器容抗Xc(n)时,形成并联谐振,此时并联回路总阻抗等于无穷大。谐波电流流经阻抗无限大的回路时。将产生无限大的谐波电压.无限大的谐波电压将在电 和电容器间产生大电流。造成电容器故障。
3串联电抗器对谐波的抑制
电气设计中多采用在无功补偿电容器回路串联电抗器来抑制谐波。谐波源从电力系统中吸收的畸变电流可分解为基波分量和谐波分量,其谐波分量与基波分量和供电 的阻抗无关,所以可以将谐波看作恒流源。电力系统的简化电路和谐波等效电路如图3、4所示闭:
图中In为谐波用电设备,X8为系统基波阻抗,X8为串联电抗器基波阻抗,XL为电容器基波阻抗,在n次谐波条件下谐波阻抗分别为:Xs(n)=nXs;XL(n)=nXL;Xc(n)=Xc/n。
从等效电路阻抗图4可得,流入供电系统的谐波电流I为:
流入并补装置的谐波电流I_Cn为:
nXs为系统谐波阻抗与系统大、小运行方式的短路容量有关。根据式(4)、(5)可以看出关键在于Xl与Xc的取值,现就典型情况讨论如下(见表1)。
由表1可知。无功补偿回路串联电抗器要实现对谐波电流的抑制,须使回路电抗对谐波源产生的低次谐波电呈电感性,即满足:
n为主要谐波的低次数,从上述讨论可知,对同一系统,由于K值不同,其运行状况截然不同,因此正确选择电抗器电抗率K值是十分重要的。
4电抗率的选择
在《并联电容器装置设计规范))GB50227—2008中指出了串联电抗器电抗率的配置标准,简单概述如下:
(1)当谐波为5次及以上时,电抗率宜取4.5%-5%;
(2)(2)当谐波为3次及以上时,电抗率宜取l2%;
(3)(3)根据电 条件与电容器参数,亦可采用4.5%~5%与12%两种电抗率混装。在选择并补装置串联电抗器电抗值参数时.一定首先研究一下.供电系统中具有什么样的主要谐波次数范围,然后确定其电抗值的百分比,要避开可能出现的谐波放大区域。
由式(6)可得:
式中w为基波角速度,w=2πf=100π
此时。实际调谐频率为:
由式(7)可知,如系统背景谐波以5次谐波为主,应串5%或6%电抗器,谐振点为224Hz或204Hz(可避免产生大于5次谐波250Hz的谐振);如背景谐波以4次谐波为主,应串7%或8%的电抗器.谐振点为189Hz或177Hz(可避免产生大于4次谐波200Hz的谐振);如系统背景谐波以3次谐波为主,应串12%或13%电抗器。谐振点为144Hz或139Hz(可避免产生大于3次谐波150Hz的谐振)。
5串联电抗器后需注意的问题
串联电抗器后会带来些新的问题,如果不注意,同样会对电容器的使用造成危害。
5.1降低电 中的功率损耗
正确选择串联电抗器电抗率的同时。须考虑并联电容器额定电压的选取。串联电抗器后,并联电容器两端电压被抬升。电容器长期处于过电压运行下会造成损坏,故电容器额定电压的选取按下式确定:
其中,U为电容器额定电压,U为系统电压,U吼为串联电抗器后电容两端电压,U为电容两端谐波电压,K为电抗率。根据IEC相关标准,在高压系统中3次、5次、7次谐波设计时分别按照基波电压0.3%、3%、3%考虑,低压系统分别按0.5%、5%、5%考虑。以低压400V系统,串联6%电抗率的电抗器为例,计算电容器额定电压:
即电容器的额定电压为470V以上才是可靠的。
5.2电容器补偿容量选择
串联相应电抗器以及确定补偿电容器额定电压后,安装容量与实际输出容量是不同的,两者关系可按下式计算:
式中Q为电容器输出容量,Q为电容器安装容量,U为电容器运行电压,U为电容器额定电压,K为电抗率。可见,若单纯提高电容器额定电压。实际运行时,低于额定电压,会出现无功容量亏损,造成无功补偿的不足。所以在选择补偿电容容量时,应考虑串联电抗器造成的电容器输出容量的变化.并应留有部分裕量。
5.3提高功率因数及相应地减少电费
由式(6)可得,如串联电抗器电抗率为6%,则并补回路的抑制谐波的低次数为:
即6%串联电抗器抑制5次及以上次数的谐波。而对3次及以上次数的谐波电流的放大程度非常严重,从而导致电容器组损坏。因此经过大量运行及经验数据,国家规定。需抑制5次及以上次数的谐波,同时避免对3次以上谐波的放大,电抗率可选为4.5%。另外,为了解决3次谐波放大问题,有的变电站的电容器组并非每组都串联6%电抗器,而是有几组串6%电抗器,另外几组串12%或13%电抗器。针对某种背景谐波,选择串联电抗率时,首先要研究一下,供电系统中具有什么样的主要谐波次数范围,然后确定其电抗值的百分比,避免发生并联、串联谐振,以及谐波放大现象。
6安科瑞AZC/AZCL智能集成式电容器介绍
6.1产品概述
AZC/AZCL系列智能电容器是应用于0.4kV、50Hz低压配电中用于节省能源、降低线损、提高功率因数和电能质量的新一代无功补偿设备。它由智能测控单元,晶闸管复合开关电路,线路保护单元,两台共补或一台分补低压电力电容器构成。可替代常规由熔丝、复合开关或机械式接触器、热继电器、低压电力电容器、指示灯等散件在柜内和柜面由导线连接而组成的自动无功补偿装置。具有体积更小,功耗更低,维护方便,使用寿命长,可靠性高的特点,适应现代电 对无功补偿的更高要求。
AZC/AZCL系列智能电容器采用定式LCD液晶显示器,可显示三相母线电压、三相母线电流、三相功率因数、频率、电容器路数及投切状态、有功功率、无功功率、谐波电压总畸变率、电容器温度等。通过内部晶闸管复合开关电路,自动寻找投入(切除)点,实现过零投切,具有过压保护、缺相保护、过谐保护、过温保护等保护功能。
6.2产品选型
AZC系列智能电容器选型:
AZCL系列智能电容器选型:
6.3产品实物展示
声明:本站部分文章内容及图片转载于互联 、内容不代表本站观点,如有内容涉及侵权,请您立即联系本站处理,非常感谢!