谐波智能滤波装置在某化工厂生产上的应用
王海芹
图1接于配电变压器低压侧的负荷
1号配变原来装有0.4kV侧的无功补偿电容器近600kvar,运行两年来已先后损坏更换约60%,由于无功不足,按力率调整电费每年多交10多万元(2010年统计)。
为消除谐波的不良影响,降低生产损耗,延长设备寿命,提高生产效率和产品质量,同时也为满足无功补偿的要求,某化工厂用低压谐波滤波器装置代替了原来的补偿电容器组。
表11号配电变压器总线测试值
谐波次数 | 5 | 7 | 11 | 13 |
电流(A) | 483 | 312 | 176 | 184 |
3 ANAPF有源电力滤波装置
3.1 ANAPF有源电力滤波装置技术参数
接线方式 | 三相三线或三相四线 | |||
接入电压 | 3×380V ±10% | |||
接入频率 | 50Hz ±2% | |||
动态补偿响应时间 | 动态响应<4ms,全响应时间<20ms; | |||
开关频率 | 10kHz | |||
功能设置 | 只补偿谐波、只补偿无功、既补偿谐波又补偿无功;手动、自动切换。 | |||
谐波补偿次数 | 2-21次 | |||
保护类型 | 直流过压 IGBT过流 装置温度保护 | |||
过载保护 | 自动限流在设定值,不发生过载 | |||
冷却方式 | 智能风冷 | |||
噪音 | < 65db(处于柜内并运作于额定状态) | |||
工作环境温度 | -10℃~+45℃ | |||
工作环境湿度 | <85%RH 不凝结 | |||
安装场合 | 室内安装 | |||
海拔高度 | ≤1000m(更高海拔需降容使用) | |||
进出线方式 | 下进下出 | |||
防护等级 | IP21 | |||
智能通信接口 | RS485/MODBUS-RTU | |||
远程监控 | 可选 | |||
外形尺寸(mm) (W×D×H) |
30A | 50A | 75A | 100A |
600×500×1500 | 600×500×1500 | 600×500×1800 | 800×600×2200 | |
重量(kg) | 三相四线 | 三相三线 | ||
30A、50A | 75A、100A | 30A、50A | 75A、100A | |
280 | 360 | 240 | 290 |
3.2 无功补偿与电力滤波兼顾
同一般低压电容补偿设备相比,ANAPF有源谐波滤波装置除具有无功补偿作用外,还具有滤波能力,使用户注入系统的谐波电流大大降低,表2~3是某化工厂在两组不同用电条件下的实测数据分析。
从表2可以看出,装设谐波滤波装置前,原有电容补偿支路和负荷及配电变压器之间构成并联谐振回路使电容及配电变压器的谐波电流明显放大,其谐振点在13次附近。
表3反映了投入谐波滤波装置后使用户的各项电能指标得到明显改善;无供需量减少50%,功率因素从0.734提高到0.917,电压及电流畸变均减少了一半。
ANAPF有源滤波装置投入使用后,吸收整流设备产生的大部分高次谐波电流,大大减少对电 污染。1号变压器0.4kV侧投入谐波滤波装置后,注入系统的谐波电流值5次从301A降至108A,7次从132A降至36A,11次从48A降至24A,13次从36A降至12A;对5、7、11、13次谐波的吸收效率分别是64%、72%、50%、66%。
表2 原有电容补偿设备对各次谐波电流的影响(0.4kV侧)
工况 | In/I1(%) | ||||
3 | 5 | 7 | 11 | 13 | |
原有补偿电容投入后 | 4.6 | 33.8 | 16.9 | 9.2 | 18.4 |
原有补偿电容退出后 | 4.6 | 26.1 | 10.7 | 3.0 | 1.5 |
表3 谐波滤波装置对电能质量的改善
工况 | 母线电压(V) | 母线电流(KA) | 功率因素 | 三相视在功率(MVA) | 三相有功功率(MW) | 三相无功功率(Mvar) | 电压总畸变率(THDy) | 电流总畸变率(THDI) |
谐波滤波装置投入前 | 389.4 | 2.3 | 0.734 | 1.57 | 1.15 | 1.067 | 5.3% | 14.57% |
谐波滤波装置投入后 | 397.3 | 1.834 | 0.917 | 1.26 | 1.15 | 0.53 | 2.55% | 7.3% |
3.3 ANAPF有源电力滤波装置主要技术特点
和控制算法,精度更高、运行更稳定;模块化设计,便于生产调试;便利的并联设计,方便扩容;具有完善的桥臂过流、保护功能;
3.4 谐波抑制及治理的容量设计
3.4.1谐波电流估算
谐波是由非线性设备产生的,而每种设备的实际工作状态都不同。因此实际谐波电流需采用专门设备进行测量,考虑到设备的技术及经济性,设计谐波治理装置的额定谐波补偿电流应略大于系统谐波电流。由于谐波电流本身的测量与计算比较复杂,况且在设计时往往很难采集到足够的电气设备使用中的谐波数据,可以根据下列公式以对谐波电流进行估算。
3.4.2 谐波补偿装置容量选型
补偿电流选择原则:根据估算得到谐波电流值。
如采用无源谐波抑制,可根据无功容量每千乏(kVar)折算成电流后按0.2-0.3的系数折算成谐波抑制电流,如100 kVar消谐式无功补偿电流为144A,按系数0.2折算即抑制28.8A的谐波电流。
如采用有源滤波装置,可根据滤波方案选择框图中的估算值进行设计选型。
例:某公司配电变压器容量为150kVA,变压器变比为10/0.4kV,K1取值为0.8,K2取值为25%,试求选用电流等级为多少的有源滤波器即可满足抑制谐波的需要。
根据电流谐波公式为:
3.5 ANAPF有源电力滤波装置价格及主要元件清单
型号:ANAPF50-400/B | |
参考价格:7.5万元/台 | |
主要产品明细: | |
序号 |
声明:本站部分文章内容及图片转载于互联 、内容不代表本站观点,如有内容涉及侵权,请您立即联系本站处理,非常感谢!
赞 (0)
ANAPF有源滤波装置在0.4KV中小型企业配电系统中的应用
上一篇
2013年4月27日
有源滤波器在建筑楼宇配电中的应用
下一篇
2013年4月27日
|